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This paper suggests a collection of demographic models describing the time
evolution of the medico-demographic indicators of population: population
size, population age distributions, fertility, mortality etc. The evolution of the
population is considered to be driven by birth–death processes and deceases.
For each model a respective set of evolution equation is formulated. These
equations include kinetic parameters that have the meaning of the transition
rates and whose values are linked to the characteristics of current medico-
demographic state. We consider a number of evolution demographic models
of different levels the lowest of which includes uni-gender population, where,
in addition, newborns appear irrespective of the population distribution
over ages. Then we introduce more sophisticated models that distinguish
the ages of the members of community and their gender. We also consider
the situations, where infections and deceases affect the medico-demographic
state and thus the evolution of the population. The results of our study are
illustrated by some numerical examples. KEYWORDS: Demography; statistics; evolution

models; fertility; mortality; morbidity.

Citation: Lushnikov, A. A., A. D. Gvishiani, Yu. S. Lyubovtseva, and A. A. Makosko (2013), Evolution models for geomedical

statistics, Geoinf. Res. Papers Ser., BS1001, doi:10.2205/2013BS008.

1. Introduction

Demographic statistics operates with a range of concepts
that, from the first sight, seem very natural. Among them
the death rate, birth rate, life span, morbidity, etc.. Each of
these characteristics is attributed to a well-measured quan-
titative demographic indicators, e.g., the number of deaths
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per thousand of the population or the average age equal to
the total age of a group of people divided by the number of
people in the group. Such indicators are widely used in med-
ical statistics as well as in many other social Sciences. These
indicators are compared, and on the basis of such compari-
son the conclusions can be drawn on the reasons of this or
that social phenomenon [Alho and Spencer, 2005; Bongaarts
and Bulatao, 2000; McVean, 2003; Medkov, 2005; Preston et
al., 2001; Schoen, 2007; Venetskii, 1981].

Demographic studies based on certain reasonable assump-
tions are, undoubtedly, the valuable tools for providing the
information about the future size and structure of the pop-
ulation. Current demographic trends, characterized by low
fertility and increasing longevity, lead to an ageing popu-
lation that has definite and unpleasant economic and bud-
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getary implications. Next, ethno-cultural diversity, changing
patterns in partnership behaviors and household formation,
confront our society with complex challenges. [Clark, 1976;
Getz and Haight, 1989; Hastings, 2000; Lutz, 2001].

One of the most significant conditions in carrying out ac-
curate population estimates, especially in a context of strong
instability of demographic evolution, is the availability of
the statistical information about the most recent evolution
of demographic phenomena. Meanwhile, all these phenom-
ena are governed by some laws and thus can be described
with the help of adequately formulated mathematical mod-
els [Charlesworth, 1980; Fowler, 1977; Hoppenstadt, 1975;
Reinshaw, 1991; Webb, 1985]

There exist numerous attempts of mathematical descrip-
tion of the demographic situations, beginning with the clas-
sical work of Maltus who assuming the linear dependence of
the birth–death process derived the well-known Maltus’ ex-
ponential law. According to the Maltus law the population
either unlimitedly grows or diminishes exponentially with
time, depending on the ratio of birth-to-death rates. At the
birth–death ratio equal to unity the population should not
change, but this equilibrium occurs to be unstable. More-
over, the dependencies of the rate of both these processes on
the population size can be principally different, so the posi-
tion of the stationary point may depend on the population
size.

The main goal of this paper is threefold:

∙ Firstly, we introduce the reader to the collection of the
most popular nowadays evolution demographic mod-
els. These models help one to understand the basic
principles of formulation of the evolution models.

∙ Secondly, we suggest several our own demographic
models, where we introduce the age distribution, mi-
gration processes, morbidity, and infections.

∙ Thirdly, we demonstrate how to parametrize the evo-
lution models and how these parameters are connected
with the main medico-demographic indicators.

The remainder of this paper is organized as follows. Next
Section describes the basic principles underlying the demo-
graphic models and introduces to a couple of well known
models: the simplest Maltus model linear with respect to
the population number and the logistic model that takes
into account some limitations put on the fertility rate. These
limitations are related to the deficiency of resources, which
prevents the families to grow (or lead to the growth of the
mortality rate). In this Section we also consider a general-
ized logistic model, whose parameters depend on time and
the nonlinearity introduced by the limitations is arbitrary
(rather than quadratic, as in the classical logistic model).
In Section 3 the distributions of population over the ages is
introduced explicitly. In addition, we introduce the fertility
active age groups, which leads to some additional and very
serious complications. The evolution equation in this case
becomes integro-differential. Still it is analyzable for linear
evolution models. A simplified three age groups model ends
up this Section. Section 4 extends the demographic models
by introducing two genders, which simply doubles the num-
ber of demographic equations. For considering deceases and

infections we introduce a model, where the demography of
the decease carrier is taking into account (Section 5). The
migration processes are considered in Section 6. We consider
several settlements and formulate the demographic equation
for each. The settlements are linked by the migration fluxes.
In Section 7 we connect the parameters of the demographic
models with the geomedical indicators. The concluding Sec-
tion 8 summarizes the results of this paper.

2. Basic Principles and Models

In this Section we describe the basic principles of con-
structing the demographic models. There exists a lot of de-
mographic models, but the principles of their formulation re-
main identical [Hastings, 2000; Hoppenstadt, 1975; McVean,
2003; Murray, 2002; Venetskii, 1981].

Let us consider an isolated settlement populated with a
group of people. Let 𝑛(𝑡) be the number of people in the
group at the moment of time 𝑡 (the average population size).
We assume for simplicity that only two processes govern the
time evolution of the population: the birth and the death.
The population grows up due to the birth of new individuals
and drops down due to their death. Then we can write down
the following simple evolution equation,

𝑑𝑛

𝑑𝑡
= κ𝑓(𝑛)− 𝜆𝑔(𝑛) + 𝐼+ + 𝐼−.

Here κ𝑓(𝑛) is the birth rate (the fertility rate) and 𝜆𝑔(𝑛)
is the death rate (the mortality rate). The constants κ
and 𝜆 are referred to as the rate constants of the respec-
tive processes. The functions 𝑓(𝑛) and 𝑔(𝑛) describe the
𝑛-dependence of the rates of the birth and the death pro-
cesses. The last two terms on the right-hand side (RHS) of
this equation are the migration in- and outflows.

2.1. The Maltus Model

The simplest option is 𝑓(𝑛) = 𝑛, 𝑔(𝑛) = 𝑛, i.e., the birth
and the death rates are linear in the population size 𝑛(𝑡).
We thus come to the simple linear differential equation,

𝑑𝑛

𝑑𝑡
= κ𝑛− 𝜆𝑛.

The solution to this equation is well known,

𝑛(𝑡) = 𝑛0𝑒
𝜇𝑡.

This exponential dependence is referred to as the Maltus
law. Here and below

𝜇 = κ − 𝜆 and 𝑛0 = 𝑛(0).

It is seen that the population is either grows up if the fertil-
ity exceeds mortality (𝜇 > 0) or drops down otherwise (see
Figure 1).
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2.2. Logistic Model

The Maltus model does not take into account the non-
linearity related to limited resources for the development of
the self-sustainable population. This resource factor is intro-
duced in the standard logistic model by a multiplier in the
expression for the fertility rate: namely, the term κ𝑛 is re-
placed by κ𝑛(1−𝛼𝑛). The last multiplier in this expression
diminishes the total fertility rate. The coefficient 𝛼 is an
empirical constant that should be determined from current
demographic data. For example, 𝛼 can be equal to 1/𝑛max,
where 𝑛max is the maximal possible size of the offspring lim-
ited, let us say, with the total existing living area or the total
food resource. Hence, the logistic model is formulated as

𝑑𝑛

𝑑𝑡
= κ𝑛(1− 𝛼𝑛)− 𝜆𝑛.

The solution to this equation is known. At 𝜇 > 0

𝑛(𝑡) =
𝑛0

𝑠(1− 𝑒−𝜇𝑡) + 𝑒−𝜇𝑡
. (1)

Here 𝑠 = 𝛼κ𝑛0/𝜇 is the dimensionless parameter governing
the evolution process. If 𝑠 = 1 (or 𝑛0 = 𝜇/κ𝛼) the popula-
tion does not change. Moreover, 𝑛(𝑡) −→ 𝜇/κ𝛼 as 𝑡 −→ ∞.

At negative 𝜇 the logistic curve is different,

𝑛(𝑡) =
𝑛0𝑒

−|𝜇|𝑡

𝑠(1− 𝑒−|𝜇|𝑡) + 1
. (2)

Respective curves given by Eqs. (1) and (2) are shown in
Figure 2 and Figure 3.

2.3. Generalized Logistic Model

The logistic model is seen to belong to the class of models
describing by the equation, (the generalized logistic model),

𝑑𝑛

𝑑𝑡
= 𝑎𝑛𝜎 − 𝑏𝑛. (3)

The coefficients 𝑎 and 𝑏 can have any sign. Moreover, they
depend on time. On introducing 𝑛(𝑡) = 𝑚(𝑡)𝑒−𝐵(𝑡) with
𝐵(𝑡) =

∫︀ 𝑡

0
𝑏(𝑡′)𝑑𝑡′ yields,

𝑑𝑚

𝑑𝑡
= 𝑎𝑒−(𝜎−1)𝐵(𝑡)𝑚𝜎. (4)

The substitution 𝜏 =
∫︀ 𝑡

0
𝑎(𝑡′)𝑒−(𝜎−1)𝐵(𝑡′)𝑑𝑡′ reduces Eq. (4)

to

𝑑𝑚

𝑑𝜏
= 𝑚𝜎.

This equation with the initial condition 𝑚(0) = 𝑛0 is readily
solved. The solution at 𝜎 > 1 is,

𝑚(𝜏) =

[︂
𝑛𝜎−1
0

1− (𝜎 − 1)𝜏𝑛𝜎−1
0

]︂ 1
𝜎−1

. (5)

At 𝜎 < 1
𝑚(𝜏) = [(1− 𝜎)𝜏 + 𝑛1−𝜎

0 ]
1

1−𝜎 . (6)

Figure 1. The Maltus law. The population size is seen to
grow up if the fertility exceeds the mortality (curves 1, 2)
and to drop down otherwise (curves 3, 4).

3. Age Structured Populations

3.1. Introducing Age

Until this moment our consideration did not include the
age distribution inside the population group. Now we correct
this deficiency. To this end we introduce 𝑛(𝑎, 𝑡) – the number
of individuals whose age lies within the interval [𝑎, 𝑎 + 𝑑𝑎]
[Charlesworth, 1980].

We first assume that nothing happens to the individu-
als except for the changes in their age. Of course, the age
depends on time but, in general, it does not coincide with
current time (so-called “physiological age”). The function
𝑓(𝑡) = 𝑛(𝑎(𝑡), 𝑡), in accordance with our assumption that
nothing happens to the population, does not change with
time, i.e., it satisfies the equation,

𝑑𝑓

𝑑𝑡
= 0

or
𝜕𝑛

𝜕𝑡
+ �̇�

𝜕𝑛

𝜕𝑎
= 0. (7)
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Figure 2. The logistic curve for 𝜇 > 0. The population
size is seen to grow up if the demography parameter 𝑠 < 1.
Otherwise the population size drops down despite the fact
that the fertility rate exceeds the mortality rate. In both
the cases the curves approach to the equilibrium value 𝑛𝑒 =
𝜇/κ𝛼 as 𝑡 −→ ∞.

Here �̇� stands for the rate of change of age with time. It is
usually assumed that �̇� = 1, i.e., the age of the individual
simply coincides with the time elapsed since its birth. Then
Eq. (7)) takes the form:

𝜕𝑛

𝜕𝑡
+

𝜕𝑛

𝜕𝑎
= 0.

This is a first-order partial differential equation, the general
solution to which is,

𝑛(𝑎, 𝑡) = 𝑛0(𝑎− 𝑡),

where 𝑛0(𝑎) = 𝑛(𝑎, 0) is an arbitrary function of a single
argument the form of which is determined by the initial con-
ditions. (the age distribution at the initial moment of time
𝑡 = 0).

3.2. Fertility and Mortality

Now we consider a more complicated and quite realistic
example. Let the initial age distribution of population be

Figure 3. The logistic curve for 𝜇 < 0. In this case the
population size drops down irrespective of the value of the
demography parameter 𝑠.

𝑛0(𝑎). Next, the individuals are assumed to die, but no one
is born. The rate of mortality 𝜆 = 𝜆(𝑎) depends on the age.
Then instead of Eq. (7) we have to solve the equation,

𝜕𝑛

𝜕𝑡
+

𝜕𝑛

𝜕𝑎
= −𝜆(𝑎)𝑛. (8)

The solution to this equation is:

𝑛(𝑎, 𝑡) = 𝜃(𝑎− 𝑡)𝑛0(𝑎− 𝑡) exp[−
𝑎∫︁

0

𝜆(𝑎′)𝑑𝑎′]. (9)

Here 𝜃(𝑥) is the Heaviside step-function equal to unity for
positive 𝑥 and zero otherwise. Its presence means that there
are no individuals of negative age.

Now we add to Eq. (8) the term responsible for fertility.
The evolution equation acquires the form:

𝜕𝑛

𝜕𝑡
+

𝜕𝑛

𝜕𝑎
= κ𝑁(𝑡)𝛿(𝑎)− 𝜆(𝑎)𝑛, (10)

where κ is the fertility rate, 𝑁(𝑡) is the number of pairs able
to give offspring, and the delta-function corresponds to the
fact that the age of newborns is zero. We assume that

𝑁(𝑡) =

⎡⎣ ∞∫︁
0

𝑆(𝑎)𝑛(𝑎, 𝑡)𝑑𝑎

⎤⎦𝑠

. (11)
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Here the form-factor 𝑆(𝑎) is responsible for the contribu-
tion of the age group in the population reproduction rate.
The function 𝑆(𝑎) is normalized to unity, i.e.,

∞∫︁
0

𝑆(𝑎)𝑑𝑎 = 1.

3.3. Stationary Case

The stationary distribution over ages meets the equation,

𝑑𝑛𝑠

𝑑𝑎
= κ𝑁𝑠𝛿(𝑎)− 𝜆(𝑎)𝑛𝑠. (12)

Here index 𝑠 corresponds to the stationary limit. On solving
Eq. (12) yields,

𝑛𝑠 = κ𝑁𝑠 exp[−Λ(𝑎)]𝜃(𝑎), (13)

where Λ(𝑎) =
∫︀ 𝑎

0
𝜆(𝑎′)𝑑𝑎′. Now we have to find 𝑁𝑠. Using

the definition (11), we find

𝑁𝑠 =

⎡⎣κ ∞∫︁
0

𝑆(𝑎′) exp[−Λ(𝑎′)𝑑𝑎′]

⎤⎦−(𝑠−1)

.

If 𝑠 = 1 (linear case) we cannot find 𝑁𝑠 not solving the time
dependent problem.

The total number of individuals in the population is,

𝑁 = κ𝑁𝑠

∞∫︁
0

exp[−Λ(𝑎′)]𝑑𝑎′. (14)

The result is seen to be independent of the initial stage
of the population development. Figure 4 displays the age
distribution for the stationary case.

3.4. Transient Regime

In this Subsection we analyze the solution of the birth–
death equation (10). We start with a given initial distribu-
tion over ages 𝑛0(𝑎) and seek for a solution as a sum of the
general solution to the homogeneous equation (without the
first term on its right-hand side) and a particular solution to
the inhomogeneous one. The general solution to the homo-
geneous equation is already known. It is given by Eq. (9).
The particular solution to the inhomogeneous equation is
easy to construct. Finally, we find,

𝑛(𝑎, 𝑡) = [𝑛0(𝑎− 𝑡)𝜃(𝑡− 𝑎)+

κ𝑁(𝑡− 𝑎)𝜃(𝑎)𝜃(𝑎− 𝑡)] exp[−
∫︁ 𝑎

0

𝜆(𝑎′)𝑑𝑎′]. (15)

At long times we obtain the stationary solution Eq. (13).
The general solution Eq. (15) consists of two parts: a running
wave corresponding to the initial distribution of ages and a
wave related to the birth process. The first part entirely dies

Figure 4. A stationary distribution over ages.

out with time. The second wave after a transient period of
time converts to the stationary regime Eq. (13).

The problem is not yet completely solved, for we did not
find 𝑁(𝑡). In order to find this function let us introduce
𝐼(𝑡) = 𝑁1/𝑠, so that 𝑁(𝑡) = 𝐼𝑠(𝑡). For 𝐼(𝑡) we formu-
late a nonlinear integral equation, which immediately follows
from Eq. (15) after multiplying its both sides by 𝑆(𝑎) and
integrating over 𝑎 from zero to infinity.

𝐼(𝑡) = κ
∫︁ 𝑡

0

𝐼𝑠(𝑡− 𝑎)𝑆(𝑎)𝑒−Λ(𝑎)𝑑𝑎+

∞∫︁
𝑡

𝑛0(𝑎− 𝑡)𝑆(𝑎)𝑒−Λ(𝑎)𝑑𝑎. (16)

The last term on the RHS of this equation is a known func-
tion of time. Now everything is clear. It is sufficient to solve
Eq. (16), and to draw conclusions on the impact of various
factors on the evolution of the population from Eq. (14).

We complete this Section by one small improvement. We
redefine the 𝐼(𝑡) in such a way that to take into account the
finiteness of the pregnancy period 𝑡0. The result is evident,

𝐼(𝑡) =

∞∫︁
0

𝑛(𝑎, 𝑡− 𝑡0)𝑆(𝑎)𝑑𝑎.

Here 𝑡0 is the period of pregnancy.
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3.5. Three-Age Model

It is possible to simplify the above consideration by in-
troducing the following approximation: All population is di-
vided into three groups

∙ Group I contains the individuals of age within [0, 𝑎1]
years. These individuals are not yet involved to the
productive activity. Their source is the individuals
that are born in the families from the second group.

∙ The second group comprises the adult persons of age
between [𝑎1, 𝑎2] years. These individuals are produc-
tive in both respects. They produce the offspring
and they are involved to the socio-exonomical activity.
This very group supports the existence of the first and
the third group.

∙ The third group includes old individuals of age within
[𝑎2,∞] years (pensioners). The source for this group is
the ageing process that transfers the individuals from
the second group to the third one, where they end
their lives.

The meaning of this model is absolutely transparent and
does not need in additional explanations. The respective
mathematical model is also readily derived from Eq. (10)
on integrating the latter from 𝑎𝑘−1 to 𝑎𝑘 and assuming the
mortality to be constant within the given age group. These
equations are,

𝑑𝑛1

𝑑𝑡
= 𝛾κ𝑛2 − 𝑛1 − 𝜆1𝑛1,

𝑑𝑛2

𝑑𝑡
= 𝑛1 − 𝑛2 − 𝜆2𝑛2,

𝑑𝑛3

𝑑𝑡
= 𝑛2 − 𝜆3𝑛3.

Here 𝛾 is the breeding coefficient (the number of babies pro-
duced by one mother) and 𝜆𝑖 is the mortality within the
respective group. This is the linear version of the three-age
model. The nonlinearities can also be introduced.

4. Two Gender Population

4.1. Basic Equations

Now we extend our consideration to the case, where the
reproduction demands two individuals of opposite sex. We
thus introduce two age distributions: 𝑚(𝑎, 𝑡) and 𝑓(𝑎, 𝑡) for
the individuals of masculine and feminine genders respec-
tively. These two functions meet the system of equations,

𝜕𝑚

𝜕𝑡
+

𝜕𝑚

𝜕𝑎
= κ𝑚𝐼𝑚𝐼𝑓𝛿(𝑎)− 𝜆𝑚(𝑎)𝑚,

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑎
= κ𝑓𝐼𝑚𝐼𝑓𝛿(𝑎)− 𝜆𝑓 (𝑎)𝑓.

Here

𝐼𝑚(𝑡) =

∞∫︁
0

𝑆𝑚(𝑎)𝑚(𝑎, 𝑡− 𝑡0)𝑑𝑎,

𝐼𝑓 (𝑡) =

∞∫︁
0

𝑆𝑓 (𝑎)𝑓(𝑎, 𝑡− 𝑡0)𝑑𝑎.

Constants κ and 𝜆(𝑎) with the corresponding indices have
the same meaning as above, i.e., they are the birth–death
rates constants for men and women respectively.

Again, as above we get the following set of equations for
𝐼𝑚(𝑡) and 𝐼𝑓 (𝑡):

𝐼𝑚(𝑡) = κ𝑚

𝑡∫︁
0

𝐼𝑚(𝑡− 𝑎)𝐼𝑓 (𝑡− 𝑎)𝑆𝑚(𝑎)𝑒−Λ𝑚(𝑎)𝑑𝑎+

∞∫︁
𝑡

𝑛0𝑚(𝑡− 𝑎)𝐼𝑓 (𝑡− 𝑎)𝑆𝑚(𝑎)𝑒−Λ𝑚(𝑎)𝑑𝑎,

𝐼𝑓 (𝑡) = κ𝑓

𝑡∫︁
0

𝐼𝑚(𝑡− 𝑎)𝐼𝑓 (𝑡− 𝑎)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎+

∞∫︁
𝑡

𝑛0𝑓 (𝑡− 𝑎)𝐼𝑓 (𝑡− 𝑎)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎.

4.2. Hen-House

Let us assume that the female population limits the rate
of reproduction. This is especially typical for hen-houses,
where one cock is able to provide all the offspring of chickens.
In the human community the birth rate is limited by the
capacity of the female body rather than the population of
men. Indeed, if there are many men, and only one woman,
the number of children she may have does not depend on
the size of the male population.

So, if the fertility is limited by the population of women,
we can rewrite the birth–death equation for women in the
form:

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑎
= κ𝑓𝐼𝑓𝛿(𝑎)− 𝜆𝑓 (𝑎)𝑓.

The birth–death process for men is also limited by the num-
ber of women,

𝜕𝑚

𝜕𝑡
+

𝜕𝑚

𝜕𝑎
= κ𝑚𝐼𝑓𝛿(𝑎)− 𝜆𝑚(𝑎)𝑚.
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For the fertility of women 𝐼𝑓 (𝑡) we have:

𝐼𝑓 (𝑡) =

∞∫︁
0

𝑆𝑓 (𝑎)𝑓(𝑎, 𝑡− 𝑡0)𝑑𝑎.

The integral equation for 𝐼𝑓 (𝑡) has the form:

𝐼𝑓 (𝑡) = κ𝑓

𝑡∫︁
0

𝐼𝑓 (𝑡− 𝑎)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎+

∞∫︁
𝑡

𝑛0𝑓 (𝑎− 𝑡)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎. (17)

The last term on the RHS of Eq. (17) is a known function
of time. Hence, Eq. (17) can be solved by using the Laplace
transform. We introduce

𝐼𝑓 (𝑝) =

∞∫︁
0

𝐼𝑓 (𝑡)𝑒
−𝑝𝑡𝑑𝑡,

𝑆𝑓 (𝑝) =

∞∫︁
0

𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑡)𝑒−𝑝𝑡𝑑𝑡

and

𝑄𝑓 (𝑝) =

∞∫︁
0

𝑒−𝑝𝑡

∞∫︁
𝑡

𝑛0𝑓 (𝑎− 𝑡)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎𝑑𝑡.

From Eq. (17) we finally get,

𝐼𝑓 (𝑝) =
𝑄𝑓 (𝑝)

1− κ𝑓𝑆𝑓 (𝑝)
.

4.3. A Simple Example

Let 𝑆𝑓 (𝑎) be the gamma-distribution,

𝑆𝑓 (𝑎) = 𝑎𝑟𝑒−𝑟𝑎

and Λ(𝑎) = 𝜆𝑎. Then

𝑆𝑓 (𝑝) =
𝑟!

(𝑝+ 𝑟 + 𝜆)𝑟+1
.

For 𝑛 = 0 we have:

𝐼𝑓 (𝑝) = 𝑄𝑓 (𝑝) + κ𝑓
𝑄𝑓 (𝑝)

𝑝+ 𝑟 + 𝜆− κ𝑓
.

Accordingly, the

𝐼𝑓 (𝑡) =

∞∫︁
𝑡

𝑛0𝑓 (𝑡− 𝑎)𝑆𝑓 (𝑎)𝑒
−Λ𝑓 (𝑎)𝑑𝑎+

∫︁
𝑒−(κ−𝜆−𝑟)(𝑡−𝜏)

∞∫︁
𝜏

𝑛0𝑓(𝑎− 𝜏)𝑆(𝑎)𝑑𝑎𝑑𝜏.

In the same spirit we can write down the formulas for 𝑟 > 0.

5. Morbidity and Deceases

This Section demonstrates how to introduce the deceases
to the above described schemes. For simplicity we consider
the population comprising 𝑥(𝑡) healthy and 𝑦(𝑡) ill individu-
als. We also assume that the fertility and the mortality are
linear with respect to the population numbers and that the
members of 𝑦 group never recover (irreversible deceases).

5.1. Linear Model

According to our assumptions the simplest possible set of
equation looks as follows:

𝑑𝑥

𝑑𝑡
= κ𝑥− 𝜇𝑥− 𝜆ℎ𝑥. (18)

The RHS of this equation claims that the healthy people
appear with the rate κ𝑥, they get ill with the rate 𝜇𝑥, and
die with the rate 𝜆ℎ𝑥. The second equation describes the
dynamics of 𝑦-group,

𝑑𝑦

𝑑𝑡
= 𝜇𝑥− 𝜆𝑖𝑦. (19)

Now the first term on the RHS of this equation describes the
morbidity rate. It enters the equation with the positive sign.
The second term is the mortality rate. We assume that the
ill people die faster than the healthy ones, i.e., 𝜆𝑖 > 𝜆ℎ. One
sees that Eqs. (18) and (19) are a modification of the Maltus
model.

The solution to Eqs. (18) and (19) is,

𝑥(𝑡) =
κ𝑛0

κ − 𝜆ℎ − 𝜇
𝑒(κ−𝜆ℎ−𝜇)𝑡,

𝑦(𝑡) =
κ(𝜇− 𝜆𝑖)𝑛0

(κ − 𝜆ℎ − 𝜇)2
(𝑒(κ−𝜆ℎ−𝜇)𝑡 − 𝑒(𝜇−𝜆𝑖)𝑡).

5.2. Generalized Logistic Model

Let us introduce the nonlinearity term to the set Eqs. (18)
and (19).

𝑑𝑥

𝑑𝑡
= κ𝑥𝛾 − 𝜇𝑥− 𝜆ℎ𝑥. (20)

The RHS of this equation claims that the healthy people
appear with the rate κ𝑥𝛾 , they catch a decease with the
rate 𝜇𝑥, and die with the rate 𝜆ℎ𝑥. The second equation
describes the dynamics of 𝑦-group,

𝑑𝑦

𝑑𝑡
= 𝜇𝑥− 𝜆𝑖𝑦. (21)

Because the first equation of this set Eq. (20) is solved in-
dependently of the second Eq. (21), this set admits the ana-
lytical solution. Equations (5) and (6) yield the solution of
the problem.
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5.3. Infections and Epidemies

Let us return to our x–y model, but now we consider the
morbidity rate proportional to 𝑦 – the number of already
infected individuals. Next, the proportionality coefficient is
assumed to depend on the population 𝑍 of bacteria causing
the decease.

𝑑𝑥

𝑑𝑡
= κ𝑥− 𝛼(𝑍)𝑥𝑦 + 𝛽𝑦 − 𝜆ℎ𝑥. (22)

This equation states that people are born (the first term
on its RHS), get ill (the second term, proportional to the
number of infected persons), recover with the rate 𝛽 (the
third term) and die (the last term). The development of the
ill population is given by the equation,

𝑑𝑦

𝑑𝑡
= 𝛼(𝑍)𝑥𝑦 − 𝛽𝑦 − 𝜆𝑖𝑦. (23)

The number of ill individuals grows because they infect the
healthy ones (the first term on the RHS), some patients re-
cover (the second term), and some die (the last term).

Finally, the population of bacteria grows proportionally to
the total number of individuals, and the current population
of bacteria. The respective birth–death equation is,

𝑑𝑍

𝑑𝑡
= 𝐵(𝑥+ 𝑦)𝑍 − Λ𝑍. (24)

Here 𝐵 is the breeding rate coefficient of the bacteria and Λ
is their death constant.

We note a useful equation:

𝑑𝑁

𝑑𝑡
= κ𝑥− 𝜇𝑦 − 𝜆ℎ𝑥

i.e., the size of the population 𝑁 = 𝑥+𝑦 increases due to the
production of new individuals and decreases by their death.

First, consider the case, where 𝛽 does not depend on
the size of the population of microbes. Then the system of
Eqs. (22) and (23) can be solved independently of Eq. (24).
Let us find the stationary solution. It’s easy to do. The
result is,

𝑥0 =
𝛽 + 𝜇

𝛼
𝑦0 =

(𝛽 + 𝜇)(κ − 𝜆)

𝛼2
.

There is another steady-state solution

𝑥1 = κ/𝜆, 𝑦1 = 0.

This result corresponds to the complete absence of infected
individuals.

6. Migration Processes

Here we consider the simplest possible model that allows
one to include the migration processes. We consider 𝑁 set-
tlements and introduce 𝑛𝑘(𝑡) – the population size of the
𝑘-th settlement. We assume that the evolution of the pop-
ulations is governed by the birth–death processes and the

migration. The set of the evolution equations now looks as
follows:

𝑑𝑛𝑘

𝑑𝑡
= [𝑓(𝑛𝑘)κ𝑘 − 𝜆𝑘𝑔(𝑛𝑘)] +

∑︁
𝑙 ̸=𝑘

𝜇𝑘,𝑙𝑛𝑙 − 𝑛𝑘

∑︁
𝑙 ̸=𝑘

𝜇𝑙,𝑘. (25)

The meaning of the last two terms on the right-hand side
of this equation is as follows. The third term describes the
population influx to the 𝑘-th settlement due to migration
of the population from all other settlements. The fourth
term is the migration outflux from the 𝑘-th settlement to
all others. The first two terms on the RHS of Eq. (25) are
responsible for the birth–death processes. All the migration
processes are assumed to be linear in the population numbers
𝑛𝑘. In principle, the migration processes can also include
the nonlinearities appearing, e.g., due to the deficiency of
working places.

The migration coefficients 𝜇𝑙,𝑘 should be found from the
regular measurements of the migration in- and outfluxes. It
is important to note that 𝜇𝑖,𝑘 ̸= 𝜇𝑘,𝑖.

7. Results and Discussion

7.1. Demographic Parameter

Above consideration of the simplest demographic models
shows that the time dependence of the population size is de-
termined by the dimensionless time 𝜇𝑡 and the dimensionless
group,

𝑠 =
κ𝛼𝑛𝜎

0

𝜇
.

Evolution equation (3) for the reduced population size 𝜈 =
𝑛/𝑛0 and constant 𝑎 = κ𝛼 and 𝑏 = 𝜇 can be rewritten in
the dimensionless form:

𝑑𝜈

𝑑𝜏
= −𝑠𝜈𝜎 − 𝜈.

Hence,

𝑛(𝑡) = 𝑛0𝜈(𝜇𝑡, 𝑠).

In what follows the absolute value of the dimensionless group
𝑠 is referred to as the demographic parameter. The condition
𝑠 = 1 defines the “equilibrium population size”

𝑛0 =
(︁ 𝜇

𝛼κ

)︁ 1
𝜎
.

7.2. Models and Demographic Indicators

Now we show how to express the standard medico-
demographic exponents in terms of the constants entering
the birth–death equations of our demographic models.
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The total number of men and women in a given social
group is,

𝑁𝑚 =

∞∫︁
0

𝑛𝑚(𝑎, 𝑡)𝑑𝑎, 𝑁𝑓 =

∞∫︁
0

𝑛𝑓 (𝑎, 𝑡)𝑑𝑎.

The total size of the population is the sum of these two
values,

𝑁(𝑡) = 𝑁𝑚(𝑡) +𝑁𝑓 (𝑡).

Fertility is the number of births per unit time per one person

𝐹 (𝑡) =
κ𝐼𝑚(𝑡)𝐼𝑓 (𝑡)

𝑁(𝑡)
.

The number of births during time 𝑇 (say, one year)

𝐹𝑇 (𝑡) = κ
𝑇∫︁

0

𝐼𝑚(𝑡)𝐼𝑓 (𝑡)

𝑁(𝑡)
𝑑𝑡.

Extinction rate

𝐷𝑠(𝑡) =

∞∫︁
0

𝜆𝑠(𝑎)𝑛𝑠(𝑎, 𝑡)𝑑𝑎,

where 𝑠 = 𝑓,𝑚. Mortality (number of deaths during time 𝑇 )

𝐷𝑠𝑇 =

𝑇∫︁
0

𝑑𝑡

∞∫︁
0

𝜆𝑠(𝑎)𝑛𝑠(𝑎, 𝑡)𝑑𝑎.

Figure 5. Growth of population in Russia before 1990.

Figure 6. Growth of population in Russia past 1990.

Figure 5 and Figure 6 demonstrate the application of the
demographic modelling to the data on evolution of the pop-
ulation size in Russia before and after the changes happened
at the end of 1990. The population growth before 1990 fol-
lows the classic Maltus law. The subsequent decline in the
population size is evidently attributed to worsening the liv-
ing conditions in Russia.

8. Conclusion

In this Section we resume the results of this paper.
We have formulated a collection of demographic models.

The main idea of this study is to show that the demographic
indicators are expressed in terms of the constants entering
the demographic birth–death equations. In their turn, these
constants having very close meaning and very close sound-
ing enter to the standard medico-demographic indicators in
rather complicate manners. On the other hand, the phys-
ical meaning of these constants is much more transparent
and they are universal in contrast to the standard indica-
tors. The main results of this paper may be summarized as
follows

∙ We have formulated the principles of construction and
parametrization of the evolution demographic models

∙ On the basis of these principles we considered known
models and formulated a number of new ones

∙ We have shown how the parameters of the evolu-
tion models are linked with the standard medico-
demographic indicators
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∙ Our basic idea is to replace the medico-demographic
set of characteristics by the set of constants entering
the birth–death equation of the evolution models.

∙ We have demonstrated that the set of the models
considered above is enough for modeling any medico-
demographic situation.
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