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Abstract. This paper suggests a collection of
demographic models describing the time evolu-
tion of the medico-demographic indicators of
population: population size, population age
distributions, fertility, mortality etc. The evo-
lution of the population is considered to be
driven by birth–death processes and deceases.
For each model a respective set of evolution
equation is formulated. These equations include
kinetic parameters that have the meaning of the
transition rates and whose values are linked to
the characteristics of current medico-demogra-
phic state. We consider a number of evolution
demographic models of different levels the
lowest of which includes uni-gender population,
where, in addition, newborns appear irrespective
of the population distribution over ages. Then
we introduce more sophisticated models that
distinguish the ages of the members of commu-
nity and their gender. We also consider the
situations, where infections and deceases affect
the medico-demographic state and thus the
evolution of the population. The results of study
are illustrated by some numerical examples.



1. Introduction

Demographic statistics operates with a range of con-
cepts that, from the first sight, seem very natural.
Among them the death rate, birth rate, life span, mor-
bidity, etc.. Each of these characteristics is attributed
to a well-measured quantitative demographic indica-
tors, e.g., the number of deaths per thousand of the
population or the average age equal to the total age
of a group of people divided by the number of peo-
ple in the group. Such indicators are widely used in
medical statistics as well as in many other social Sci-
ences. These indicators are compared, and on the basis
of such comparison the conclusions can be drawn on
the reasons of this or that social phenomenon [Alho
and Spencer, 2005; Bongaarts and Bulatao, 2000;
McVean, 2003; Medkov, 2005; Preston et al., 2001;
Schoen, 2007; Venetskii, 1981].

Demographic studies based on certain reasonable as-
sumptions are, undoubtedly, the valuable tools for pro-
viding the information about the future size and struc-
ture of the population. Current demographic trends,
characterized by low fertility and increasing longevity,
lead to an ageing population that has definite and un-
pleasant economic and budgetary implications. Next,



ethno-cultural diversity, changing patterns in partner-
ship behaviors and household formation, confront our
society with complex challenges. [Clark, 1976; Getz
and Haight, 1989; Hastings, 2000; Lutz, 2001].

One of the most significant conditions in carrying out
accurate population estimates, especially in a context
of strong instability of demographic evolution, is the
availability of the statistical information about the most
recent evolution of demographic phenomena. Mean-
while, all these phenomena are governed by some laws
and thus can be described with the help of adequately
formulated mathematical models [Charlesworth, 1980;
Fowler, 1977; Hoppenstadt, 1975; Reinshaw, 1991;
Webb, 1985]

There exist numerous attempts of mathematical de-
scription of the demographic situations, beginning with
the classical work of Maltus who assuming the lin-
ear dependence of the birth–death process derived the
well-known Maltus’ exponential law. According to the
Maltus law the population either unlimitedly grows or
diminishes exponentially with time, depending on the
ratio of birth-to-death rates. At the birth–death ra-
tio equal to unity the population should not change,
but this equilibrium occurs to be unstable. Moreover,
the dependencies of the rate of both these processes



on the population size can be principally different, so
the position of the stationary point may depend on the
population size.

The main goal of this paper is threefold:

• Firstly, we introduce the reader to the collection of
the most popular nowadays evolution demographic
models. These models help one to understand
the basic principles of formulation of the evolution
models.

• Secondly, we suggest several our own demographic
models, where we introduce the age distribution,
migration processes, morbidity, and infections.

• Thirdly, we demonstrate how to parametrize the
evolution models and how these parameters are
connected with the main medico-demographic in-
dicators.

The remainder of this paper is organized as follows.
Next Section describes the basic principles underlying
the demographic models and introduces to a couple of
well known models: the simplest Maltus model linear
with respect to the population number and the logis-
tic model that takes into account some limitations put
on the fertility rate. These limitations are related to



the deficiency of resources, which prevents the fami-
lies to grow (or lead to the growth of the mortality
rate). In this Section we also consider a generalized
logistic model, whose parameters depend on time and
the nonlinearity introduced by the limitations is arbi-
trary (rather than quadratic, as in the classical logis-
tic model). In Section 3 the distributions of popula-
tion over the ages is introduced explicitly. In addi-
tion, we introduce the fertility active age groups, which
leads to some additional and very serious complications.
The evolution equation in this case becomes integro-
differential. Still it is analyzable for linear evolution
models. A simplified three age groups model ends up
this Section. Section 4 extends the demographic mod-
els by introducing two genders, which simply doubles
the number of demographic equations. For considering
deceases and infections we introduce a model, where
the demography of the decease carrier is taking into
account (Section 5). The migration processes are con-
sidered in Section 6. We consider several settlements
and formulate the demographic equation for each. The
settlements are linked by the migration fluxes. In Sec-
tion 7 we connect the parameters of the demographic
models with the geomedical indicators. The concluding
Section 8 summarizes the results of this paper.



2. Basic Principles and Models

In this Section we describe the basic principles of con-
structing the demographic models. There exists a lot of
demographic models, but the principles of their formu-
lation remain identical [Hastings, 2000; Hoppenstadt,
1975; McVean, 2003; Murray, 2002; Venetskii, 1981].

Let us consider an isolated settlement populated with
a group of people. Let n(t) be the number of people in
the group at the moment of time t (the average pop-
ulation size). We assume for simplicity that only two
processes govern the time evolution of the population:
the birth and the death. The population grows up due
to the birth of new individuals and drops down due to
their death. Then we can write down the following
simple evolution equation,

dn

dt
= κf (n)− λg(n) + I+ + I−.

Here κf (n) is the birth rate (the fertility rate) and
λg(n) is the death rate (the mortality rate). The con-
stants κ and λ are referred to as the rate constants of
the respective processes. The functions f (n) and g(n)
describe the n-dependence of the rates of the birth and
the death processes. The last two terms on the right-
hand side (RHS) of this equation are the migration in-



and outflows.

2.1. The Maltus Model

The simplest option is f (n) = n, g(n) = n, i.e., the
birth and the death rates are linear in the population
size n(t). We thus come to the simple linear differential
equation,

dn

dt
= κn − λn.

The solution to this equation is well known,

n(t) = n0e
µt .

This exponential dependence is referred to as the Mal-
tus law. Here and below

µ = κ − λ and n0 = n(0).

It is seen that the population is either grows up if the
fertility exceeds mortality (µ > 0) or drops down oth-
erwise (see Figure 1).

2.2. Logistic Model

The Maltus model does not take into account the non-
linearity related to limited resources for the develop-
ment of the self-sustainable population. This resource



Figure 1. The Maltus law. The population size is seen
to grow up if the fertility exceeds the mortality (curves 1,
2) and to drop down otherwise (curves 3, 4).



factor is introduced in the standard logistic model by a
multiplier in the expression for the fertility rate: namely,
the term κn is replaced by κn(1−αn). The last mul-
tiplier in this expression diminishes the total fertility
rate. The coefficient α is an empirical constant that
should be determined from current demographic data.
For example, α can be equal to 1/nmax, where nmax is
the maximal possible size of the offspring limited, let
us say, with the total existing living area or the total
food resource. Hence, the logistic model is formulated
as

dn

dt
= κn(1− αn)− λn.

The solution to this equation is known. At µ > 0

n(t) =
n0

s(1− e−µt) + e−µt
. (1)

Here s = ακn0/µ is the dimensionless parameter gov-
erning the evolution process. If s = 1 (or n0 = µ/κα)
the population does not change. Moreover, n(t) −→
µ/κα as t −→∞.

At negative µ the logistic curve is different,

n(t) =
n0e
−|µ|t

s(1− e−|µ|t) + 1
. (2)



Respective curves given by Eqs. (1) and (2) are shown
in Figure 2 and Figure 3.

2.3. Generalized Logistic Model

The logistic model is seen to belong to the class of
models describing by the equation, (the generalized lo-
gistic model),

dn

dt
= anσ − bn. (3)

The coefficients a and b can have any sign. More-
over, they depend on time. On introducing n(t) =

m(t)e−B(t) with B(t) =
∫ t

0 b(t ′)dt ′ yields,

dm

dt
= ae−(σ−1)B(t)mσ. (4)

The substitution τ =
∫ t

0 a(t ′)e−(σ−1)B(t ′)dt ′ reduces
Eq. (4) to

dm

dτ
= mσ.

This equation with the initial condition m(0) = n0 is
readily solved. The solution at σ > 1 is,

m(τ) =

[
nσ−1

0

1− (σ − 1)τnσ−1
0

] 1
σ−1

. (5)



Figure 2. The logistic curve for µ > 0. The population
size is seen to grow up if the demography parameter s < 1.
Otherwise the population size drops down despite the fact
that the fertility rate exceeds the mortality rate. In both
the cases the curves approach to the equilibrium value ne =
µ/κα as t −→∞.



Figure 3. The logistic curve for µ < 0. In this case the
population size drops down irrespective of the value of the
demography parameter s.



At σ < 1

m(τ) = [(1− σ)τ + n1−σ
0 ]

1
1−σ . (6)

3. Age Structured Populations

3.1. Introducing Age

Until this moment our consideration did not include the
age distribution inside the population group. Now we
correct this deficiency. To this end we introduce n(a, t)
– the number of individuals whose age lies within the
interval [a, a + da] [Charlesworth, 1980].

We first assume that nothing happens to the individ-
uals except for the changes in their age. Of course, the
age depends on time but, in general, it does not coin-
cide with current time (so-called “physiological age”).
The function f (t) = n(a(t), t), in accordance with our
assumption that nothing happens to the population,
does not change with time, i.e., it satisfies the equa-
tion,

df

dt
= 0



or
∂n

∂t
+ ȧ

∂n

∂a
= 0. (7)

Here ȧ stands for the rate of change of age with time.
It is usually assumed that ȧ = 1, i.e., the age of the
individual simply coincides with the time elapsed since
its birth. Then Eq. (7)) takes the form:

∂n

∂t
+
∂n

∂a
= 0.

This is a first-order partial differential equation, the
general solution to which is,

n(a, t) = n0(a − t),

where n0(a) = n(a, 0) is an arbitrary function of a single
argument the form of which is determined by the initial
conditions. (the age distribution at the initial moment
of time t = 0).

3.2. Fertility and Mortality

Now we consider a more complicated and quite realistic
example. Let the initial age distribution of population
be n0(a). Next, the individuals are assumed to die, but
no one is born. The rate of mortality λ = λ(a) depends



on the age. Then instead of Eq. (7) we have to solve
the equation,

∂n

∂t
+
∂n

∂a
= −λ(a)n. (8)

The solution to this equation is:

n(a, t) = θ(a − t)n0(a − t) exp[−
a∫

0

λ(a′)da′]. (9)

Here θ(x) is the Heaviside step-function equal to unity
for positive x and zero otherwise. Its presence means
that there are no individuals of negative age.

Now we add to Eq. (8) the term responsible for fer-
tility. The evolution equation acquires the form:

∂n

∂t
+
∂n

∂a
= κN(t)δ(a)− λ(a)n, (10)

where κ is the fertility rate, N(t) is the number of
pairs able to give offspring, and the delta-function cor-
responds to the fact that the age of newborns is zero.
We assume that

N(t) =

 ∞∫
0

S(a)n(a, t)da

s

. (11)



Here the form-factor S(a) is responsible for the con-
tribution of the age group in the population reproduc-
tion rate. The function S(a) is normalized to unity,
i.e.,

∞∫
0

S(a)da = 1.

3.3. Stationary Case

The stationary distribution over ages meets the equa-
tion,

dns
da

= κNsδ(a)− λ(a)ns . (12)

Here index s corresponds to the stationary limit. On
solving Eq. (12) yields,

ns = κNs exp[−Λ(a)]θ(a), (13)

where Λ(a) =
∫ a

0 λ(a′)da′. Now we have to find Ns .
Using the definition (11), we find

Ns =

κ ∞∫
0

S(a′) exp[−Λ(a′)da′]

−(s−1)

.



If s = 1 (linear case) we cannot find Ns not solving the
time dependent problem.

The total number of individuals in the population is,

N = κNs

∞∫
0

exp[−Λ(a′)]da′. (14)

The result is seen to be independent of the initial
stage of the population development. Figure 4 displays
the age distribution for the stationary case.

3.4. Transient Regime

In this Subsection we analyze the solution of the birth–
death equation (10). We start with a given initial dis-
tribution over ages n0(a) and seek for a solution as a
sum of the general solution to the homogeneous equa-
tion (without the first term on its right-hand side) and
a particular solution to the inhomogeneous one. The
general solution to the homogeneous equation is al-
ready known. It is given by Eq. (9). The particular
solution to the inhomogeneous equation is easy to con-
struct. Finally, we find,

n(a, t) = [n0(a − t)θ(t − a)+



Figure 4. A stationary distribution over ages.



κN(t − a)θ(a)θ(a − t)] exp[−
∫ a

0
λ(a′)da′]. (15)

At long times we obtain the stationary solution Eq. (13).
The general solution Eq. (15) consists of two parts: a
running wave corresponding to the initial distribution of
ages and a wave related to the birth process. The first
part entirely dies out with time. The second wave after
a transient period of time converts to the stationary
regime Eq. (13).

The problem is not yet completely solved, for we
did not find N(t). In order to find this function let
us introduce I (t) = N1/s , so that N(t) = I s(t). For
I (t) we formulate a nonlinear integral equation, which
immediately follows from Eq. (15) after multiplying its
both sides by S(a) and integrating over a from zero to
infinity.

I (t) = κ
∫ t

0
I s(t − a)S(a)e−Λ(a)da+

∞∫
t

n0(a − t)S(a)e−Λ(a)da. (16)

The last term on the RHS of this equation is a known
function of time. Now everything is clear. It is suf-
ficient to solve Eq. (16), and to draw conclusions on



the impact of various factors on the evolution of the
population from Eq. (14).

We complete this Section by one small improvement.
We redefine the I (t) in such a way that to take into
account the finiteness of the pregnancy period t0. The
result is evident,

I (t) =

∞∫
0

n(a, t − t0)S(a)da.

Here t0 is the period of pregnancy.

3.5. Three-Age Model

It is possible to simplify the above consideration by in-
troducing the following approximation: All population
is divided into three groups

• Group I contains the individuals of age within [0, a1]
years. These individuals are not yet involved to the
productive activity. Their source is the individuals
that are born in the families from the second group.

• The second group comprises the adult persons of
age between [a1, a2] years. These individuals are
productive in both respects. They produce the off-
spring and they are involved to the socio-exonomical



activity. This very group supports the existence of
the first and the third group.

• The third group includes old individuals of age
within [a2,∞] years (pensioners). The source for
this group is the ageing process that transfers the
individuals from the second group to the third one,
where they end their lives.

The meaning of this model is absolutely transpar-
ent and does not need in additional explanations. The
respective mathematical model is also readily derived
from Eq. (10) on integrating the latter from ak−1 to
ak and assuming the mortality to be constant within
the given age group. These equations are,

dn1

dt
= γκn2 − n1 − λ1n1,

dn2

dt
= n1 − n2 − λ2n2,

dn3

dt
= n2 − λ3n3.

Here γ is the breeding coefficient (the number of ba-
bies produced by one mother) and λi is the mortality
within the respective group. This is the linear version



of the three-age model. The nonlinearities can also be
introduced.

4. Two Gender Population

4.1. Basic Equations

Now we extend our consideration to the case, where the
reproduction demands two individuals of opposite sex.
We thus introduce two age distributions: m(a, t) and
f (a, t) for the individuals of masculine and feminine
genders respectively. These two functions meet the
system of equations,

∂m

∂t
+
∂m

∂a
= κmImIf δ(a)− λm(a)m,

∂f

∂t
+
∂f

∂a
= κf ImIf δ(a)− λf (a)f .

Here

Im(t) =

∞∫
0

Sm(a)m(a, t − t0)da,



If (t) =

∞∫
0

Sf (a)f (a, t − t0)da.

Constants κ and λ(a) with the corresponding indices
have the same meaning as above, i.e., they are the
birth–death rates constants for men and women re-
spectively.

Again, as above we get the following set of equations
for Im(t) and If (t):

Im(t) = κm

t∫
0

Im(t − a)If (t − a)Sm(a)e−Λm(a)da+

∞∫
t

n0m(t − a)If (t − a)Sm(a)e−Λm(a)da,

If (t) = κf

t∫
0

Im(t − a)If (t − a)Sf (a)e−Λf (a)da+

∞∫
t

n0f (t − a)If (t − a)Sf (a)e−Λf (a)da.



4.2. Hen-House

Let us assume that the female population limits the
rate of reproduction. This is especially typical for hen-
houses, where one cock is able to provide all the off-
spring of chickens. In the human community the birth
rate is limited by the capacity of the female body rather
than the population of men. Indeed, if there are many
men, and only one woman, the number of children she
may have does not depend on the size of the male pop-
ulation.

So, if the fertility is limited by the population of
women, we can rewrite the birth–death equation for
women in the form:

∂f

∂t
+
∂f

∂a
= κf If δ(a)− λf (a)f .

The birth–death process for men is also limited by the
number of women,

∂m

∂t
+
∂m

∂a
= κmIf δ(a)− λm(a)m.

For the fertility of women If (t) we have:

If (t) =

∞∫
0

Sf (a)f (a, t − t0)da.



The integral equation for If (t) has the form:

If (t) = κf

t∫
0

If (t − a)Sf (a)e−Λf (a)da+

∞∫
t

n0f (a − t)Sf (a)e−Λf (a)da. (17)

The last term on the RHS of Eq. (17) is a known func-
tion of time. Hence, Eq. (17) can be solved by using
the Laplace transform. We introduce

If (p) =

∞∫
0

If (t)e−ptdt,

Sf (p) =

∞∫
0

Sf (a)e−Λf (t)e−ptdt

and

Qf (p) =

∞∫
0

e−pt
∞∫
t

n0f (a − t)Sf (a)e−Λf (a)dadt.



From Eq. (17) we finally get,

If (p) =
Qf (p)

1− κf Sf (p)
.

4.3. A Simple Example

Let Sf (a) be the gamma-distribution,

Sf (a) = are−ra

and Λ(a) = λa. Then

Sf (p) =
r !

(p + r + λ)r+1
.

For n = 0 we have:

If (p) = Qf (p) + κf
Qf (p)

p + r + λ− κf
.

Accordingly, the

If (t) =

∞∫
t

n0f (t − a)Sf (a)e−Λf (a)da+

∫
e−(κ−λ−r)(t−τ)

∞∫
τ

n0f (a − τ)S(a)dadτ .



In the same spirit we can write down the formulas for
r > 0.

5. Morbidity and Deceases

This Section demonstrates how to introduce the de-
ceases to the above described schemes. For simplicity
we consider the population comprising x(t) healthy and
y(t) ill individuals. We also assume that the fertility
and the mortality are linear with respect to the popula-
tion numbers and that the members of y group never
recover (irreversible deceases).

5.1. Linear Model

According to our assumptions the simplest possible set
of equation looks as follows:

dx

dt
= κx − µx − λhx . (18)

The RHS of this equation claims that the healthy peo-
ple appear with the rate κx , they get ill with the rate
µx , and die with the rate λhx . The second equation
describes the dynamics of y -group,

dy

dt
= µx − λiy . (19)



Now the first term on the RHS of this equation de-
scribes the morbidity rate. It enters the equation with
the positive sign. The second term is the mortality
rate. We assume that the ill people die faster than the
healthy ones, i.e., λi > λh. One sees that Eqs. (18)
and (19) are a modification of the Maltus model.

The solution to Eqs. (18) and (19) is,

x(t) =
κn0

κ − λh − µ
e(κ−λh−µ)t ,

y(t) =
κ(µ− λi)n0

(κ − λh − µ)2
(e(κ−λh−µ)t − e(µ−λi)t).

5.2. Generalized Logistic Model

Let us introduce the nonlinearity term to the set Eqs. (18)
and (19).

dx

dt
= κxγ − µx − λhx . (20)

The RHS of this equation claims that the healthy peo-
ple appear with the rate κxγ, they catch a decease
with the rate µx , and die with the rate λhx . The sec-
ond equation describes the dynamics of y -group,

dy

dt
= µx − λiy . (21)



Because the first equation of this set Eq. (20) is solved
independently of the second Eq. (21), this set admits
the analytical solution. Equations (5) and (6) yield the
solution of the problem.

5.3. Infections and Epidemies

Let us return to our x–y model, but now we consider
the morbidity rate proportional to y – the number of
already infected individuals. Next, the proportionality
coefficient is assumed to depend on the population Z
of bacteria causing the decease.

dx

dt
= κx − α(Z )xy + βy − λhx . (22)

This equation states that people are born (the first term
on its RHS), get ill (the second term, proportional to
the number of infected persons), recover with the rate
β (the third term) and die (the last term). The devel-
opment of the ill population is given by the equation,

dy

dt
= α(Z )xy − βy − λiy . (23)

The number of ill individuals grows because they infect
the healthy ones (the first term on the RHS), some
patients recover (the second term), and some die (the
last term).



Finally, the population of bacteria grows proportion-
ally to the total number of individuals, and the cur-
rent population of bacteria. The respective birth–death
equation is,

dZ

dt
= B(x + y)Z − ΛZ . (24)

Here B is the breeding rate coefficient of the bacteria
and Λ is their death constant.

We note a useful equation:

dN

dt
= κx − µy − λhx

i.e., the size of the population N = x +y increases due
to the production of new individuals and decreases by
their death.

First, consider the case, where β does not depend on
the size of the population of microbes. Then the system
of Eqs. (22) and (23) can be solved independently of
Eq. (24). Let us find the stationary solution. It’s easy
to do. The result is,

x0 =
β + µ

α
y0 =

(β + µ)(κ − λ)

α2
.

There is another steady-state solution

x1 = κ/λ, y1 = 0.



This result corresponds to the complete absence of in-
fected individuals.

6. Migration Processes

Here we consider the simplest possible model that al-
lows one to include the migration processes. We con-
sider N settlements and introduce nk(t) – the popu-
lation size of the k-th settlement. We assume that
the evolution of the populations is governed by the
birth–death processes and the migration. The set of
the evolution equations now looks as follows:

dnk
dt

= [f (nk)κk −λkg(nk)] +
∑
l 6=k

µk,lnl − nk
∑
l 6=k

µl ,k .

(25)
The meaning of the last two terms on the right-hand
side of this equation is as follows. The third term de-
scribes the population influx to the k-th settlement due
to migration of the population from all other settle-
ments. The fourth term is the migration outflux from
the k-th settlement to all others. The first two terms on
the RHS of Eq. (25) are responsible for the birth–death
processes. All the migration processes are assumed to
be linear in the population numbers nk . In principle,



the migration processes can also include the nonlinear-
ities appearing, e.g., due to the deficiency of working
places.

The migration coefficients µl ,k should be found from
the regular measurements of the migration in- and out-
fluxes. It is important to note that µi ,k 6= µk ,i .

7. Results and Discussion

7.1. Demographic Parameter

Above consideration of the simplest demographic mod-
els shows that the time dependence of the population
size is determined by the dimensionless time µt and the
dimensionless group,

s =
καnσ0
µ

.

Evolution equation (3) for the reduced population size
ν = n/n0 and constant a = κα and b = µ can be
rewritten in the dimensionless form:

dν

dτ
= −sνσ − ν.

Hence,

n(t) = n0ν(µt, s).



In what follows the absolute value of the dimensionless
group s is referred to as the demographic parameter.
The condition s = 1 defines the “equilibrium popula-
tion size”

n0 =
( µ

ακ

) 1
σ

.

7.2. Models and Demographic Indicators

Now we show how to express the standard medico-
demographic exponents in terms of the constants en-
tering the birth–death equations of our demographic
models.

The total number of men and women in a given
social group is,

Nm =

∞∫
0

nm(a, t)da, Nf =

∞∫
0

nf (a, t)da.

The total size of the population is the sum of these two
values,

N(t) = Nm(t) + Nf (t).

Fertility is the number of births per unit time per one



person

F (t) =
κIm(t)If (t)

N(t)
.

The number of births during time T (say, one year)

FT (t) = κ
T∫

0

Im(t)If (t)

N(t)
dt.

Extinction rate

Ds(t) =

∞∫
0

λs(a)ns(a, t)da,

where s = f ,m. Mortality (number of deaths during
time T )

DsT =

T∫
0

dt

∞∫
0

λs(a)ns(a, t)da.

Figure 5 and Figure 6 demonstrate the application
of the demographic modelling to the data on evolution
of the population size in Russia before and after the
changes happened at the end of 1990. The population
growth before 1990 follows the classic Maltus law. The



Figure 5. Growth of population in Russia before 1990.



Figure 6. Growth of population in Russia past 1990.



subsequent decline in the population size is evidently
attributed to worsening the living conditions in Russia.

8. Conclusion

In this Section we resume the results of this paper.
We have formulated a collection of demographic mod-

els. The main idea of this study is to show that the de-
mographic indicators are expressed in terms of the con-
stants entering the demographic birth–death equations.
In their turn, these constants having very close meaning
and very close sounding enter to the standard medico-
demographic indicators in rather complicate manners.
On the other hand, the physical meaning of these con-
stants is much more transparent and they are universal
in contrast to the standard indicators. The main results
of this paper may be summarized as follows

• We have formulated the principles of construction
and parametrization of the evolution demographic
models

• On the basis of these principles we considered known
models and formulated a number of new ones

• We have shown how the parameters of the evolu-



tion models are linked with the standard medico-
demographic indicators

• Our basic idea is to replace the medico-demographic
set of characteristics by the set of constants en-
tering the birth–death equation of the evolution
models.

• We have demonstrated that the set of the mod-
els considered above is enough for modeling any
medico-demographic situation.
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